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Quantitative Prediction and Molar
Description of the Environment

William M. Baum
University of New Hampshire

Molecular explanations of behavior, based on momentary events and variables that can be measured
each time an event occurs, can be contrasted with molar explanations, based on aggregates of events and
variables that can be measured only over substantial periods of time. Molecular analyses cannot suffice
for quantitative accounts of behavior, because the historical variables that determine behavior are inev-
itably molar. When molecular explanations are attempted, they always depend on hypothetical constructs
that stand as surrogates for molar environmental variables. These constructs allow no quantitative pre-
dictions when they are vague, and when they are made precise, they become superfluous, because they
can be replaced with molar measures. In contrast to molecular accounts of phenomena like higher
responding on ratio schedules than interval schedules and free-operant avoidance, molar accounts tend
to be simple and straightforward. Molar theory incorporates the notion that behavior produces conse-
quences that in turn affect the behavior, the notion that behavior and environment together constitute a
feedback system. A feedback function specifies the dependence of consequences on behavior, thereby
describing properties ofthe environment. Feedback functions can be derived for simple schedules, complex
schedules, and natural resources. A complete theory of behavior requires describing the environment's
feedback functions and the organism's functional relations. Molar thinking, both in the laboratory and
in the field, can allow quantitative prediction, the mark of a mature science.
Key words: molar description, feedback function, behavior-environment system, operant behavior,

hypothetical constructs

Like any experimental science, the sci-
ence of behavior is judged by its ability
to allow prediction and control. Some-
times qualitative prediction and control
suffice: in clinical settings, classrooms,
and situations where one requires only
that some behavior decrease and other
behavior increase. Some applications,
however, require quantitative predic-
tion. In the field of organizational be-
havior management (OBM), for exam-
ple, particularly in deciding whether some
technique of behavioral change is cost-
effective, one wishes to know not only
whether behavioral output will increase
but how much it will increase. Similar
questions arise in behavioral ecology,
which has applications in wildlife man-
agement. There, one wishes to predict
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how much of a resource an organism is
likely to consume, and how much might
be left at the end of its predation (see,
e.g., Taylor, 1984; Stephens & Krebs,
1986).
Apart from these practical concerns,

quantitative prediction is generally more
satisfying than qualitative, because quan-
titative prediction is widely considered
the mark of a mature science. If we can
tell only what sorts ofchanges should oc-
cur, we are at a more primitive scientific
stage than if we can also tell how much
change should occur.
The basic requirement for quantitative

prediction is that one be able to write
mathematical formulas having the gen-
eral form B = fix), where B stands for
response rate and x stands for an envi-
ronmental independent variable. Since
reinforcers and schedules of reinforce-
ment are qualitative descriptions, they
cannot stand for x. Rather, x must be a
measure ofsome quantitative dimension
of reinforcement, such as magnitude in
grams or delay of reinforcement in sec-
onds.
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MOLAR VERSUS MOLECULAR
EXPLANATION

Magnitude and delay exemplify vari-
ables that can be called molecular, which
here will mean that they can be measured
on any one occurrence of an event, such
as the presentation of a reinforcer. Each
time a grain magazine operates, one can
measure the number of grams eaten or
the delay since the last response. Molec-
ular variables contrast with molar vari-
ables, which can only be measured over
an aggregate of many events (e.g., pre-
sentations of a reinforcer). Rate of rein-
forcement, for example, cannot be mea-
sured on any one presentation of grain,
but must be calculated by counting the
number of presentations over some sub-
stantial period of time (Baum, 1973;
Rachlin, 1976).

In what follows, I will argue that mo-
lecular variables cannot suffice for quan-
titative prediction. Moreover, attempts
to rely on them exclusively not only fall
short of quantitative prediction, but ne-
cessitate hypothetical constructs ofques-
tionable validity.

Molecular Theories
To see the inadequacy of molecular

theories, let us consider explanations of
two phenomena: (1) the higher response
rates on ratio schedules than on interval
schedules, and (2) free-operant avoid-
ance.
The standard molecular account ofthe

ratio-interval rate difference appeals to
two factors, the strengthening effect of
reinforcement on the response immedi-
ately preceding it and the differential re-
inforcement of inter-response times
(IRTs) (e.g., Mazur, 1986). In interval
schedules, the longer the time since the
last response-the longer the IRT-the
higher the probability of reinforcement.
Thus, longer IRTs are differentially rein-
forced and become more frequent, low-
ering response rate. Acting in the oppo-
site direction, reinforcement tends to
increase response rate in both interval
and ratio schedules. Since its effect is op-
posed by differential reinforcement of

IRTs only in an interval schedule, re-
sponse rate is higher on a ratio schedule.
One shortcoming of this theory is that

without further specification of how re-
sponse rate depends on reinforcement,
one can make no quantitative prediction.
As it stands, the theory tells us that the
ratio rate will be higher, but not how much
higher. To make a quantitative predic-
tion while doing without molar variables
like rate ofreinforcement, one would have
to specify how each instance ofreinforce-
ment increments response strength, a hy-
pothetical construct that would in turn
determine response rate.

Explanation of the second phenome-
non, free-operant avoidance, by molec-
ular theory also requires hypothetical
constructs. The molecular theory is based
on the two-factor theory of signalled
avoidance. Stimuli preceding an aversive
event like electric shock are said to elicit
"fear," and the avoidance response is
reinforced by fear reduction when those
stimuli are removed (Solomon & Wynne,
1954). In free-operant avoidance, where
there are no exteroceptive stimuli, appeal
is made to temporal regularity in the pre-
sentation of shock, which is considered
to produce conditioned aversive tem-
poral stimuli (CATS) that are supposed
to elicit "fear" and allow its reduction by
the avoidance response (Anger, 1963).
The molecular explanation of free-op-

erant avoidance has the same two short-
comings as the molecular explanation of
the higher response rates on ratio than
interval schedules. First, the theory pre-
dicts only that avoidance responses will
occur; it makes no quantitative predic-
tion about their rate of occurrence. Sec-
ond, neither "fear" nor CATS are ob-
servable, and their properties are
unknown. They are hypothetical con-
structs, necessary only if one must avoid
referring to frequency of shock, a molar
variable.
Molecular theories require hypotheti-

cal constructs because the explanation of
any response lies not only in events at
the moment of its occurrence but in an
aggregate of events over a span of time,
often loosely referred to as a "history of
reinforcement." A rat presses a lever when
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a light is turned on because in the past
when the light was on presses were rein-
forced with some frequency and were ex-
tinguished when the light was off. His-
torical variables are often molar variables;
to the extent that one must explain be-
havior historically, one will need often to
refer to molar variables.

What's Wrong with
Hypothetical Constructs?

Hypothetical constructs have earned a
bad name, not because they are bad in
principle -atoms are, after all, hypothet-
ical constructs-but because in practice
they are usually vague and ill-defined. If
they were well-defined, we would know
the mathmatical relations they embody,
and we could make quantitative predic-
tions. Vague hypothetical constructs,
however, allow no quantitative predic-
tion and are probably worse than none
at all.
The hypothetical constructs character-

istic ofmolecular theories, like "strength"
and "fear," serve the same sort of ex-
planatory purpose as mental constructs
like "anxiety" and "memory," to invent
present causes for historically caused be-
havior. They arise from a common prej-
udice that insists on placing causes in the
present. Staddon (1973) suggested that
the prejudice may have originated in the
course of evolution; it may be adaptive
to perceive the event that immediately
precedes some occurrence as the cause of
the occurrence. To say that the causes of
behavior are historical is to say that there
is a gap, that they cannot be found im-
mediately before the behavior, but that
they can be found in the history, and that
there is neither need nor use to fill the
gap with fictional mediators.
To say that the causes of behavior are

historical is to suggest also that they con-
stitute an aggregate, that historical causes
translate into molar environmental vari-
ables. Like mental constructs, the hy-
pothetical constructs of molecular theo-
ries function only as surrogates, surrogates
of molar environmental variables, such
as rate of shock or rate of reinforcement.
Like mental constructs, too, they are su-

perfluous, because adequate molar the-
ories are possible without them.

Molar Theories
In contrast to molecular theories, mo-

lar theories refer to environmental vari-
ables that are physical and readily spec-
ified. Questions may arise about how to
calculate rate ofreinforcement -over how
long a time period or by using an arith-
metic or a harmonic mean of intervals
between reinforcers (Killeen, 1968) -but
the properties ofany computation are well
known, and no hypothetical constructs
are needed. Moreover, whereas molecu-
lar theories exclude molar variables, mo-
lar theories in no way exclude molecular
variables. Magnitude and delay may be
important, as well as rate of reinforce-
ment. And molar theories make quanti-
tative prediction of response rate possi-
ble.
A molar theory can explain free-op-

erant avoidance, for example, relatively
simply. Once we are allowed to refer to
the frequency of the aversive event, we
can see that avoidance responding is
maintained by the reduction it produces
in that frequency (Herrnstein, 1969).
Herrnstein and Hineline (1966), for ex-
ample, found a direct relation between
rate of avoidance responding and the
amount of reduction in shock rate that
responding produced, whereas they found
an inverse relation between number of
responses to extinction and the amount
of reduction that had been possible in
prior training.

THE BEHAVIOR-ENVIRONMENT
FEEDBACK SYSTEM

Molecular variables by themselves fail
to provide adequate accounts ofbehavior
because behavior produces results in the
environment that in turn affect behavior.
That is, behavior and environment to-
gether constitute a closed feedback sys-
tem. To explain behavior one must think
ofboth behavioral output (e.g., response
rate) and environmental input (e.g., rate
of reinforcement) as continuous vari-
ables-that is, as flows through time.

Figure 1 depicts the behavior-environ-
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Figure 1. The behavior-environment feedback
system.

ment feedback system in extremely sim-
ple form. The environment provides
functions of the form r = g(B), in which
we see the dependence of some environ-
mental variable r (e.g., rate of reinforce-
ment) on a behavioral variable B (e.g.,
response rate). These functions, called "E-
rules" in an earlier paper (Baum, 1973),
nowadays are called feedback functions.
By themselves, they tell nothing about
how an organism will behave; they tell
only what sort ofan environment the or-
ganism is behaving in.
To form a theory ofbehavior, we must

know what the organism brings to the
situation. The organism provides func-
tions of the form B = J(r), in which we
see the dependence of the behavioral
variable B on the environmental variable
r. These functions, called "O-rules" ear-
lier, are the same as Skinner's functional
relations (Baum, 1973).
The figure emphasizes that in operant

relations feedback should be understood
as axiomatic: B affects r just as much as
r affects B. It illustrates also that in a
feedback system the distinction between
independent and dependent variables be-
comes arbitrary; strictly speaking, all
variables depend on one another.
A reasonable research program might

begin by trying to specify feedback func-
tions and then trying to discover func-
tional relations. Once these two goals are
met, the result is a quantitative theory
that allows quantitative predictions of
behavior. In practice, these two attempts
go on in parallel, but there is a sense in
which the description of the environ-
ment-the feedback functions- might

need to come first. To learn about the
organism, the experimenter systemati-
cally manipulates the environment. To
specify these manipulations exactly, the
feedback functions need to be worked out.
Once we can be precise about the ways
in which the environment varies, then we
can isolate the invariances that the or-
ganism contributes to the system. For that
reason, I am focusing here on feedback
functions.

Simple Feedback Functions
Figure 2 shows two methods of de-

picting the dependence of reinforcement
on behavior in interval and ratio sched-
ules. On the left, the requirements for
reinforcement are represented in cumu-
lative-recorder coordinates. In the ratio
schedule, when the cumulative record hits
the horizontal line corresponding to the
number of responses required by the
schedule, reinforcement occurs. In the in-
terval schedule, when the cumulative re-
cord crosses the vertical line correspond-
ing to the time at which reinforcement
becomes available, the next response
produces reinforcement.
The right-hand side of Figure 2 shows

feedback functions for ratio and interval
schedules. Those for ratio schedules ap-
pear as lines through the origin, because
rate of reinforcement is directly propor-
tional to response rate in a ratio schedule;
if ten responses are required for each
reinforcer, then the rate ofreinforcement
must be one-tenth of the response rate.
The proportionality varies inversely with
the ratio; the larger the ratio, the flatter
the line. The feedback function for an
interval schedule approaches the pro-
grammed rate ofreinforcement as an up-
per limit; ifreinforcers are scheduled only
once a minute, then they can be obtained
no more frequently than once a minute.
The concave curvature reveals the "di-
minishing returns" characteristic of in-
terval schedules; that is, as response rate
grows, increases in response rate produce
smaller and smaller increases in rate of
reinforcement, and beyond a certain re-
sponse rate further increases produce vir-
tually no increase in rate of reinforce-
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Figure 2. Cumulative-record representations (left) and feedback functions (right) for ratio and interval
schedules.

ment. You may check your mailbox ten
times a day, but if the mail is delivered
once, your efforts will only produce mail
once.
The difference between the feedback

functions of ratio and interval schedules
provides a straightforward account ofthe
differences in performance, including the
difference in response rate. The linear
feedback function of the ratio schedule
may be thought of as differential rein-
forcement of high response rate, because
the higher the response rate, the higher
the rate of reinforcement; hence the high
rates characteristic of ratio schedules. A
larger ratio gives a lower slope to the line
and less differential reinforcement in the
sense that each increment in rate of re-
inforcement is more costly with the larger
ratio. If the ratio is large enough, ratio
strain occurs, and responding will drop
from a high level to zero; intermediate
rates should not (and do not) occur
(Baum, 198 1). This explanation accounts

for the high work rates maintained by
piecework wages (an example of a ratio
schedule) and also for one of the chief
objections to them: the employer is
tempted to maximize profit by requiring
output that just falls short of ratio strain.
Molecular analysis offers no comparable
account, because ratio schedules provide
no differential reinforcement ofIRTs; the
probability that the next response will be
reinforced is unaffected by the passage of
time.

In the interval-schedule feedback func-
tions shown at the lower right in Figure
2, differential reinforcement of response
rate occurs only at low response rates; if
you only check for mail once a month,
then checking twice a month would prob-
ably produce mail twice as often. As the
curve flattens out, differential reinforce-
ment ceases at a relatively low rate; hence
the lower rates characteristic of interval
schedules. The higher the upper limit of
the feedback function, the more slowly
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the curve approaches the limit and the
higher the response rate at which the curve
becomes virtually flat. This shift is usu-
ally small and predicts only moderate in-
creases in response rate with increasing
rate of reinforcement when the interval
schedule is shortened, in keeping with
those usually observed (Baum, 1981). If,
however, the scheduled upper limit were
very high indeed, as in an extremely short
interval schedule (e.g., variable interval
2 sec), then the rising portion ofthe curve
would continue even into high response
rates, and the result should be a transition
to extreme response rates like those nor-
mally maintained by ratio schedules. In
at least one experiment, I have observed
such an effect (Baum, 1986).

Feedback Functions and
Compound Schedules
Pure examples of ratio and interval

schedules are difficult to find in the every-
day world. One of the ways in which the
complexity of everyday life can be ap-
proached is to combine ratio and interval
requirements into compound schedules.
Three types of compound schedules are
conjunctive, alternative, and interlock-
ing schedules.

Conjunctive interval-ratio schedules.
Figure 3A shows, the same two ways as
before, the characteristics of conjunctive
interval-ratio schedules. The cumula-
tive-record depiction ofthe schedule (left)
shows how both the interval and the ratio
requirement must be met before rein-
forcement can occur. If the organism re-
sponds at a high rate, it will meet the ratio
requirement (horizontal line) early, but
must persist until the interval require-
ment (vertical line) is met. If it responds
at a low rate, it will fail to have met the
ratio requirement when it satisfies the in-
terval requirement, and must continue
until it has met the ratio requirement.
There is one response rate that satisfies
both requirements simultaneously.
The feedback function (right) shows

how the requirements affect the depen-
dence of rate of reinforcement on re-
sponse rate. Low response rates pay off
according to the ratio schedule. High re-

sponse rates pay off according to the in-
terval schedule. The response rate that
satisfies both requirements simulta-
neously, B', where the two functions in-
tersect, can, with a few additional as-
sumptions, be shown to be the optimal
performance.

This schedule might be a realistic rep-
resentation ofhourly wages. The interval
requirement alone falls short, because
employers typically expect some mini-
mal performance even when they pay by
the hour. The result is that the employee
must meet a work requirement within a
time schedule. Without other incentives
(i.e., modification to the feedback func-
tion), the employee's optimal response
rate is B'.

Alternative interval-ratio schedules.
Figure 3B shows the characteristics of al-
ternative interval-ratio schedules. The
cumulative-record depiction shows how
either the ratio requirement may be met
by a high rate or the interval requirement
may be met by a low rate. The feedback
function reveals that low rates pay off
according to the interval schedule,
whereas high rates pay off according to
the ratio schedule. There is a response
rate B' that meets both requirements si-
multaneously, but here that rate has no
special advantage. The situation offers an
implicit choice: respond at high rates,
above B', and take control of the rate of
payoff, or respond at low rates, below B',
and go easy.

Interlocking interval-ratio schedules.
Figure 3C shows the nature of interlock-
ing interval-ratio schedules. The cumu-
lative-record depiction shows that var-
ious possibilities exist, high rates paying
off sooner but with more effort and low
rates paying off with less effort but later.
The schedule allows a whole range of
compromises between working and wait-
ing. The feedback function shown on the
right (solid curve) is the sum of the ratio
and interval feedback functions (dashed
curve and lower line). It illustrates that
the situation is a smooth blend of ratio-
and interval-like payoffs. At relatively
lower rates, the curvature indicates that
the schedule tends toward what may be
called the corrective tendency of interval
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Figure 4. Adjusting ratio schedules as models of
depleting resources or "patches." A: As more rein-
forcers are obtained, the ratio requirement in-
creases or the probability that a response will be
reinforced decreases. B: Depending on how the ratio
or probability is adjusted, different patterns of de-
pletion can result.

schedules-the lower the rate, the better
the payoff. At relatively higher rates, the
curve approaches the upper dashed line
as an asymptote, which means that the
situation shifts gradually toward ratio
payoff. The feedback fumctions reveal that
interlocking and alternative schedules re-
semble one another in offering choice be-
tween taking control and going easy.

Natural Resources
A different kind of complexity enters

when we consider the situation organ-
isms face in exploiting a resource in the
natural environment. As one eats the ber-
ries in a berry patch, there are fewer and
fewer to be found: the patch depletes. De-
pletion means that as the resource is con-
sumed, it becomes progressively more
difficult to obtain. For schedules, this
means that as reinforcers are delivered,

the schedule requirement changes so as
to make them less available.
Adjusting schedules as depleting re-

sources. Figure 4 shows how adjusting
schedules can model depleting resources.
Since hunting, searching, and otherwise
exploiting resources share with ratio
schedules the property that rate of rein-
forcement depends directly on behavior-
al output, the schedule that models a nat-
ural resource is the adjusting ratio. Figure
4A shows adjustment of ratio schedules.
Either the ratio requirement increases
with number of reinforcers delivered or
the probability of reinforcement de-
creases. Figure 4B shows the effect ofthe
adjustments on the rate ofreinforcement.
With increasing time spent exploiting the
resource, the rate of reinforcement falls,
perhaps quickly and then slowly or per-
haps slowly and then quickly, depending
on the pattern of use. For example, sys-
tematic search for berries, working from
a starting point and never retracing, will
result in little or no decline in rate of
finding berries until the patch has been
completely covered, at which point rate
of finding berries will decline precipi-
tously. Ifa bird were to hunt for seeds in
a patch of grass completely at random,
then the rate of capturing seeds would
decline rapidly at first and then ever more
slowly as the number of seeds declined
all over the patch (Baum, 1987).
The complexity of this type of situa-

tion arises because, unlike the schedules
we considered before, adjusting sched-
ules cannot be considered stationary; their
parameters shift in time. This means that
not only response rate but also time must
be taken into account. For deriving feed-
back functions, at least two additional
performance variables have to be con-
sidered: time spent responding ("time in")
and time away from the patch. When one
is searching for berries, interacting with
the patch, that is time in; when one goes
home or takes a nap under a nearby tree,
no longer interacting with the patch, that
is time away.

Interval schedules as depleting. Looked
at this way, even an ordinary interval
schedule shares some of the character of
a depleting resource (Staddon, 1980).
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Figure 5. Interval schedules as depleting. The most molecular view (A) includes only time away. The
most molar view (B) includes only time in. Combining the two (C) reveals that interval schedules may
share the property of depletion with natural resources.

Figure 5 illustrates this. Figure 5A shows
differential reinforcement ofIRTs in the
usual molecular view ofa variable-inter-
val schedule. In such a view there is no
time in, because responses are treated as
if they have no duration, and the only
time considered is the time between re-
sponses; so the IRT is considered time
away. Figure 5B shows the feedback
function of the molar view. Here, there
is no time away, because rate of rein-
forcement and response rate are com-
puted using all the available time. Hence,
Figure 5B shows the effect of response
rate during time in. Figure 5C shows how
the two views combine when we consider
both time away and time in. After some
time away, there is a higher probability
of reinforcement-hence a higher rate of
reinforcement-at the beginning of time
in. The height of this peak depends on
the duration of time away (Figure 5A).
As time in proceeds, the rate ofreinforce-
ment drops to a horizontal asymptote,
the height of which depends on the re-

sponse rate during time in, as given in
Figure 5B.
Feedback function for a patch. The

feedback function for a depleting re-
source (patch) must take into account
three performance variables: response
rate while in the patch, time in the patch,
and time away from the patch. This
means the feedback function will be four-
dimensional. Figure 6 shows only how
overall rate of reinforcement would vary
with time in, for a given time away and
response rate. The curve indicates that
there is an optimal duration of time in.
The exact height and position ofthe max-
imum depend not only on time away, but
on how the patch replenishes-whether
quickly or slowly.

CONCLUSION
Molecular theories ofbehavior -those

that rely solely on momentary events for
explanation -have two great drawbacks.
First, because present behavior arises
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Figure 6. Feedback function for a depleting patch:
Effects of varying time spent responding ("time in").

from a history of events, extended
through time, molecular theories require
invention of hypothetical constructs like
response strength and conditioned fear to
represent the extended history in mo-
mentary events ofthe present. Since these
hypothetical constructs are unmeasur-
able and vaguely defined, their explana-
tory power is more illusory than real. Sec-
ond, molecular theories, even with the
constructs, make only qualitative predic-
tions. Were the properties of the con-
structs precisely defined, quantitative
prediction might become possible, but the
constructs would stand merely as surro-
gates ofwell-understood molar historical
variables that can be specified in physical
terms. Once defined, the hypothetical
constructs become superfluous, because
one can proceed to a direct molar anal-
ysis, relating molar behavioral variables
to molar environmental variables.
With maturity, a science of behavior

should be able to make quantitative pre-
dictions. Since quantitative predictions
are possible only with molar laws, be-
havioral analysis can progress toward this
goal only by looking beyond momentary
events to molar variables and molar re-
lations.

In the laboratory and in the field, a
better understanding ofcontingencies can
be had by thinking of their molar prop-
erties, by thinking of the impact of con-
tingencies on history over a period of
time. Instead of asking, "Does this con-
tingency change behavior?" one can ask,
"If we make rate (or amount) of rein-
forcement depend on response rate ac-

cording to this relation, how much does
behavior change?" I have emphasized
here the tactically prior problem of de-
scribing the environment in molar terms,
relying on the concept of feedback func-
tions (E-rules; Figure 1). The specifica-
tion offunctional relations (0-rules; Fig-
ure 1) will follow or accompany
development of such molar descriptions.
The result will be a science of behavior
that is both powerful and practical.
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